Our Blog


The Daily Fantasy Football Glossary of NFL Stats

NFL Video Tutorials

 

2016 NFL Upgrades

Player Models Tutorial

Player Ratings Tutorial

Player Models vs Player Ratings

Building a Model Tutorial

Lineup Optimizer Tutorial

New Stacking Tool Tutorial

Multi-Lineup Builder Tutorial

My Lineups Page Tutorial

NFL Data Tutorial

New NFL 2016 Data

Bargain Rating Tutorial

Plus/Minus Tutorial

Player Projections Tutorial

Trends Tool Tutorial

Using Trends in Player Models

Using Trends for NFL

NFL Vegas Dashboard Tutorial

NFL Statistics

FantasyLabs’ mission is pretty simple: deliver the best data and provide the tools necessary to transform that data into winning daily fantasy sports lineups.

And we offer a lot of data. Some of the stats are pretty self-explanatory, but others either aren’t widely used or were created by us, meaning you might have no idea what the hell they mean.

We have tool tips across the site that you can hover over to learn more about specific stats, but I wanted to create a guide to all of the numbers we offer and just fill you in a bit more about the philosophy behind each stat, why we use the numbers we do, and how to get the most out of the data.


About +/- (Plus/Minus)

A lot of our DFS-focused stats—the stuff that’s sport-agnostic—are centered around a concept we call “Plus/Minus” (+/-). Simply put, a player’s plus/minus is his actual points minus his expected points. So if Andrew Luck scored 300 points over the past 10 games and his expectation was 250 points, he would have a Plus/Minus of 50 total points, or +5.0 points per game.

Cool. So how do we know what to “expect” from each player? We know based on our database of historic salaries and fantasy performances on each daily fantasy site. Instead of using a fragile $/point system (or, even worse, sorting players into completely arbitrary tiers), we use historic performance data to help calculate exactly what to expect out of a player based on his cost. So if Luck costs $10,000, we know he should produce X points, on average.

Using Plus/Minus, we can calculate all kinds of really cool stats and identify league-winning trends. Our Consistency stat, for example, shows how often a player has exceeded his expected points. Instead of using a “well-how-often-does-he-reach-4x-his-salary?” system that naturally overvalues cheap players, we put every player on a level playing field since all of our stats are adjusted for cost.


Sport-Agnostic Stats

Bargain Rating

Our Bargain Rating is a historical percentile rank representing how much of a bargain a player is on one daily fantasy site versus the other. We look at the typical difference in site salaries at a position and then rank a player based on how much of a bargain he is in a particular game relative to the historical data.

If a quarterback costs the same on DraftKings as he does on FanDuel, for example, he might have a high Bargain Rating for DraftKings and a low Bargain Rating for FanDuel since the latter site has a smaller salary cap and thus tends to price certain players much lower, on average.

Best Use

The Bargain Rating stat is extremely powerful and useful in a number of ways. First, there’s a strong link between Bargain Rating and player value (Plus/Minus). That shouldn’t be surprising since Plus/Minus is determined based on price; the cheaper a player, the more potential value he can offer (assuming the same skill level). It is smart to use Bargain Rating in your player models, especially in a sport like basketball in which it pays to be price-sensitive.

Second, Bargain Rating is an excellent way to determine where to get exposure to certain players. If you play daily fantasy sports on both DraftKings and FanDuel, you should get exposure to the players you like where they’re the cheapest. A big part of finding value is leaving yourself a cushion to soften the negative impact of assessment errors, and Bargain Rating does that better than any other stat.

Consistency

Also known as ‘X1,’ our Consistency figures show the percentage of games in which a player has reached his salary-based expectation. Instead of assessing players in an arbitrary and artificial way, we look at how production on each site is historically been connected to pricing to determine a more natural expected point total. All players are placed on an even playing field; it is just as easy for a $5,000 player to reach X consistency as it is for a $3,000 player, for example.

Best Use

To identify high-floor players for cash games

 

Breakout/Upside

Also known as ‘X2,’ our Breakout/Upside figures show the percentage of games in which a player has reached twice his salary-based expectation.

Best Use

To identify high-upside players for tournaments

 

Duds

Our Dud stat calculates the percentage of games in which a player has scored fewer than half his salary-based expectation.

Best Use

To identify low-floor players to avoid in cash games

 

Trends/Pro Trends

Our Trends product lets you leverage our massive database of historical salaries and fantasy performances to determine in which situations players traditionally offer value. You can create your own trends or utilize our DFS-pro-created ‘Pro Trends,’ which already show up in models and player cards.

Best Use

Our Pro Trends are very strongly linked to value, and they allow you to truly customize your models based on angles you find.

 

ML%

Moneyline percentage, or the percentage of bets coming in on each team in a game. We aggregate all our Vegas data from seven different sportsbooks.

Best Use

There’s a positive correlation between public betting trends and player value. You can also use public betting trends to help predict player/team ownership in tournaments.

 

Salary Change

A player’s change in salary over a given period of time

Best Use

To help identify players whose price might be artificially inflated/deflated due to variance


NFL-Specific Stats

Ceiling/Floor

We have a typical median projection, but then we also calculate a ceiling and floor for each player. Those numbers are what we expect the player to reach with 15 percent probability, i.e. a 15 percent chance of exceeding the ceiling and a 15 percent chance of finishing under the floor (and thus a 70 percent chance of falling between the two numbers).

We calculate ceilings/floor numbers based on predictors of volatility. We look at things like the average depth of a receivers targets, how often running backs catch passes, which players are dependent on touchdowns, the Vegas lines, etc. Then we assign a volatility rating to each player and project his range based on that.

Best Use

To find value in either GPPs (ceiling) or cash games (floor); it’s also useful for visualizing each player’s range of outcomes so you can get exposure to certain players who have access to the type of range you need.

 

Projected Plus/Minus

Simply put, this is median projection minus salary-based expectation. We just compare how we think a player will perform most of the time versus what he should do (historically) based on his cost.

Best Use

A great way to identify pure value for all leagues

 

Pts/Sal

This is the typical “points-per-dollar” you see across the DFS industry. It has its uses and can be valuable for cash games, although we think it should be just one component of your model. It is simply projected points for every $1000 of salary.

Best Use

A way to identify pure value for all leagues

 

Opponent Plus/Minus Allowed

This is also known as “Defensive Unit Rating” in our NFL sliders within Player Models. It is a highly predictive stat that shows the points above or below expectation a defense has allowed to a particular position.

It is so powerful because it naturally adjusts for opponent strength. Remember, our Plus/Minus stat is a function of salary. If a defense gets torched by four Pro Bowl quarterbacks to start the season, their Opponent Plus/Minus allowed won’t be as poor as if they had gotten beat by crappy quarterbacks. That’s because the latter group would cost less on the DFS sites and thus be expected to score fewer points.

Best Use

An extremely predictive way to judge matchups for all leagues

 

Implied Points

Simply the points we expect a player to score (historically) based on his cost.

Best Use

More as a way to visualize expectations

 

Tutorials

Want to learn more about our data and tools? Check out the Fantasy Labs Tutorials…

 

NFL Player Models Tutorial (General)


 

NFL Player Models: Creating a Model

  NFL Player Models: Projections Tutorial

  NFL Player Models: Trends Tutorial

 

NFL Player Models: Optimizer Tutorial

  NFL Trends Tutorial

 

NFL Video Tutorials

 

2016 NFL Upgrades

Player Models Tutorial

Player Ratings Tutorial

Player Models vs Player Ratings

Building a Model Tutorial

Lineup Optimizer Tutorial

New Stacking Tool Tutorial

Multi-Lineup Builder Tutorial

My Lineups Page Tutorial

NFL Data Tutorial

New NFL 2016 Data

Bargain Rating Tutorial

Plus/Minus Tutorial

Player Projections Tutorial

Trends Tool Tutorial

Using Trends in Player Models

Using Trends for NFL

NFL Vegas Dashboard Tutorial

NFL Statistics

FantasyLabs’ mission is pretty simple: deliver the best data and provide the tools necessary to transform that data into winning daily fantasy sports lineups.

And we offer a lot of data. Some of the stats are pretty self-explanatory, but others either aren’t widely used or were created by us, meaning you might have no idea what the hell they mean.

We have tool tips across the site that you can hover over to learn more about specific stats, but I wanted to create a guide to all of the numbers we offer and just fill you in a bit more about the philosophy behind each stat, why we use the numbers we do, and how to get the most out of the data.


About +/- (Plus/Minus)

A lot of our DFS-focused stats—the stuff that’s sport-agnostic—are centered around a concept we call “Plus/Minus” (+/-). Simply put, a player’s plus/minus is his actual points minus his expected points. So if Andrew Luck scored 300 points over the past 10 games and his expectation was 250 points, he would have a Plus/Minus of 50 total points, or +5.0 points per game.

Cool. So how do we know what to “expect” from each player? We know based on our database of historic salaries and fantasy performances on each daily fantasy site. Instead of using a fragile $/point system (or, even worse, sorting players into completely arbitrary tiers), we use historic performance data to help calculate exactly what to expect out of a player based on his cost. So if Luck costs $10,000, we know he should produce X points, on average.

Using Plus/Minus, we can calculate all kinds of really cool stats and identify league-winning trends. Our Consistency stat, for example, shows how often a player has exceeded his expected points. Instead of using a “well-how-often-does-he-reach-4x-his-salary?” system that naturally overvalues cheap players, we put every player on a level playing field since all of our stats are adjusted for cost.


Sport-Agnostic Stats

Bargain Rating

Our Bargain Rating is a historical percentile rank representing how much of a bargain a player is on one daily fantasy site versus the other. We look at the typical difference in site salaries at a position and then rank a player based on how much of a bargain he is in a particular game relative to the historical data.

If a quarterback costs the same on DraftKings as he does on FanDuel, for example, he might have a high Bargain Rating for DraftKings and a low Bargain Rating for FanDuel since the latter site has a smaller salary cap and thus tends to price certain players much lower, on average.

Best Use

The Bargain Rating stat is extremely powerful and useful in a number of ways. First, there’s a strong link between Bargain Rating and player value (Plus/Minus). That shouldn’t be surprising since Plus/Minus is determined based on price; the cheaper a player, the more potential value he can offer (assuming the same skill level). It is smart to use Bargain Rating in your player models, especially in a sport like basketball in which it pays to be price-sensitive.

Second, Bargain Rating is an excellent way to determine where to get exposure to certain players. If you play daily fantasy sports on both DraftKings and FanDuel, you should get exposure to the players you like where they’re the cheapest. A big part of finding value is leaving yourself a cushion to soften the negative impact of assessment errors, and Bargain Rating does that better than any other stat.

Consistency

Also known as ‘X1,’ our Consistency figures show the percentage of games in which a player has reached his salary-based expectation. Instead of assessing players in an arbitrary and artificial way, we look at how production on each site is historically been connected to pricing to determine a more natural expected point total. All players are placed on an even playing field; it is just as easy for a $5,000 player to reach X consistency as it is for a $3,000 player, for example.

Best Use

To identify high-floor players for cash games

 

Breakout/Upside

Also known as ‘X2,’ our Breakout/Upside figures show the percentage of games in which a player has reached twice his salary-based expectation.

Best Use

To identify high-upside players for tournaments

 

Duds

Our Dud stat calculates the percentage of games in which a player has scored fewer than half his salary-based expectation.

Best Use

To identify low-floor players to avoid in cash games

 

Trends/Pro Trends

Our Trends product lets you leverage our massive database of historical salaries and fantasy performances to determine in which situations players traditionally offer value. You can create your own trends or utilize our DFS-pro-created ‘Pro Trends,’ which already show up in models and player cards.

Best Use

Our Pro Trends are very strongly linked to value, and they allow you to truly customize your models based on angles you find.

 

ML%

Moneyline percentage, or the percentage of bets coming in on each team in a game. We aggregate all our Vegas data from seven different sportsbooks.

Best Use

There’s a positive correlation between public betting trends and player value. You can also use public betting trends to help predict player/team ownership in tournaments.

 

Salary Change

A player’s change in salary over a given period of time

Best Use

To help identify players whose price might be artificially inflated/deflated due to variance


NFL-Specific Stats

Ceiling/Floor

We have a typical median projection, but then we also calculate a ceiling and floor for each player. Those numbers are what we expect the player to reach with 15 percent probability, i.e. a 15 percent chance of exceeding the ceiling and a 15 percent chance of finishing under the floor (and thus a 70 percent chance of falling between the two numbers).

We calculate ceilings/floor numbers based on predictors of volatility. We look at things like the average depth of a receivers targets, how often running backs catch passes, which players are dependent on touchdowns, the Vegas lines, etc. Then we assign a volatility rating to each player and project his range based on that.

Best Use

To find value in either GPPs (ceiling) or cash games (floor); it’s also useful for visualizing each player’s range of outcomes so you can get exposure to certain players who have access to the type of range you need.

 

Projected Plus/Minus

Simply put, this is median projection minus salary-based expectation. We just compare how we think a player will perform most of the time versus what he should do (historically) based on his cost.

Best Use

A great way to identify pure value for all leagues

 

Pts/Sal

This is the typical “points-per-dollar” you see across the DFS industry. It has its uses and can be valuable for cash games, although we think it should be just one component of your model. It is simply projected points for every $1000 of salary.

Best Use

A way to identify pure value for all leagues

 

Opponent Plus/Minus Allowed

This is also known as “Defensive Unit Rating” in our NFL sliders within Player Models. It is a highly predictive stat that shows the points above or below expectation a defense has allowed to a particular position.

It is so powerful because it naturally adjusts for opponent strength. Remember, our Plus/Minus stat is a function of salary. If a defense gets torched by four Pro Bowl quarterbacks to start the season, their Opponent Plus/Minus allowed won’t be as poor as if they had gotten beat by crappy quarterbacks. That’s because the latter group would cost less on the DFS sites and thus be expected to score fewer points.

Best Use

An extremely predictive way to judge matchups for all leagues

 

Implied Points

Simply the points we expect a player to score (historically) based on his cost.

Best Use

More as a way to visualize expectations

 

Tutorials

Want to learn more about our data and tools? Check out the Fantasy Labs Tutorials…

 

NFL Player Models Tutorial (General)


 

NFL Player Models: Creating a Model

  NFL Player Models: Projections Tutorial

  NFL Player Models: Trends Tutorial

 

NFL Player Models: Optimizer Tutorial

  NFL Trends Tutorial